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ABSTRACT

In a recent monograph we have shown that the higher

order kinetic equations are divergent in an irreparable fashion.

R R AT T T PR LT T T T T RN i

In the present paper we determine completely the singularities

X

in the nth order s-body distribution function for the Weak-

Coupling Kinetic Theory (supersecularities).
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I. INTRODUCTION

In a recent monograph (1) we have shown that the
higher order kinetic eguations are divergent in an ir-
reparable fashion. In view of this result it is impossible
to calculate in finlte terms the departures from the al-
ready avallable kinetic equations (Boltzmann's for a shorv
range gas, Landau's for a weakly coupled gas and
Bogolubov'!s for a Debye gas).

It i8 the writer!s thesls that the breakdown of the
expansion corresponds to the impossibility of characteriz-
ing an arbitrary state of a system of lQEE particles by
means of the state of one typical (average) particle.
Whence, to understand the behavior of a system with more
accuracy than that afforded by the already available
kinetic equations, it is necessary to determine the
evolution of a typlcal pair of particles., Both the form
of palr-kinetic equations and a method for removing the
divergences (Metl:od of Closure) have been described (2).

The purpose of tih.: present paper 1ls to determine
completely the nature of the singularities arising in the
kinetlic expansion. Thus, we shall present the explicit
form of the nth order s-body distribution function by
means of a graphical tezhnique.

The singularities discussed here lead to a "super-
secular" behavior in all the s-body distributions ¢< the
weak-coupling kinetic theory.

The notation to be employed is as follows. The
Bogoiubov expansion of the time derivative

D=DteD+4%D+... (1)

is represented by means of the independent "time" variables
TO/,V,)“'/‘I)H by:? 9 7"\
w4 2)
o=l sl 2, (

e DT 0T O




2

The hilerarchy of equations for the time evolution of
the s-body clusters in a weakly-coupled gas 1s written as:

5 . . .
D: + '/{/\/(D.FD: iI>f>*£LSF>+/ (3)

el
I

A table of the symbols employed 1s given in the Appendix.
We shall consider only spatially homogeneocus gases,

whence ] ,
7k{ F =0 (=)

The extended (3) distribution functlons are expandecd by

means of:
f’:-)[oféf, 7"61/}{—-/” (5)

3 51, ZE%5 o
L =F+ef te s SF/ (6)

The speclal notation emphasizes the preferrea role of the
one-body distribution function in kinetic theory.

We shall consider only solutions of (3) that cor-
respond to the simple inltial value problem defined by

D Elo] _5
57

and by the requirement that all initial correlations
vanish. Thus, for example,

(7)

o ; |
{

~7 ~Z g
. le) =0, T [o)j=0

I

We shall make extensive use of the operator valued

ba~. s g
) =] e 1=T" o

For compactness, we omlt all particle indices whenever
confusion cannot arise, Superscripts refer vo the number
of particles, sulLscripts to the particle vaw-iables,

distribution
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II. GRAPHS

The ingredients of the kinetic expansion are fo, J

L, and *. These are represented as f‘ollows:S

= s
N Vertical oriented lines represent £~ and TT}FO ;
us:

5
fo 74,
Figure 1

The "propagation functions" jfﬁﬁs are derioted by
curved oriented lines. Thus,

g*z | §*5 lx
1/

Figure 2

The “"interactions" I® are represented by circles. Thus,
B*LIZ 7[0 5 18 renresented by

§*Z<}
(19

Figure 3 = ’ —
The "phase mixing” operator [ =f47 QJV/VU{X‘X} 'VV
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i1s represented by a rectangle, a cross indicating the
*

phase mixed variable. Thus, L, Z;la I,0 fo1 fop 18

represented by

L 7

| 2

Figure 4

The skeleton of a graph (- As the graph with all
freely streaming particles omitted. Thus, for example:

Figure 5

The essential point of our analysis 18 that, for a
glven order of approximation, n, the number of skeleton
graphs, & , 1is independent of s:

6w) _
’D S

Thus, a flxed number of skeletons characterizes the
order of approximation for all the clusters of particles.

(9)
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We shall see that
s0)= 60 )=
¢(3)=3%

(10)




:2 III. THE WEAK-COUPLING EXPANSION
i (1) Zeroth order theory

From (3) we have

‘5 -)LD‘::COUSZ-. (ll)
‘ 0 -3
f: ::'YTi}; (12)

(11) First order theory

Since

?5%5—('-:0} ]ﬁIZO (13)

and

L ﬁt(]Lo =0 )

wnich corresponds to the skeleton in Fig. 6,

i

Figure 6

we have, from (3)

d):s/ _ -—5}::90
dco £

S K Qa -5 SK.
F =,~%+7/\)F (16)

(15)

with

d

o,
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Therefore,
~> ?ﬁ'()f‘) 72‘ “‘% [ X S
4 F /7}/ S /| fo‘,é (5 Dyﬂfo (17)
’ t<J

We call the first expression reducible, the second ir-
reducible (i.e., only two-body interactions appear
explicitly). The reducible graph G i1s a sum of ir-
reducible ones G* corresponding to a single skeleton
thus

- ® 'T‘-r,rrr L
L 8 .
. oV Ty ;

j
@
+

. - L Nl ol e A g =
. PN R RN
% LI R T .

Flgure 7

The z{(,*) of Fig. 7 1s the only irreducible skeleton
in first order theory.

(111) Second order theory

From (3) we have
o5 So
ar®e DF =l 5 =i
—— = f‘),J +L'2T f:
dr, Ity
For 8 = 1, 18) 1s the Landau equation

4%{ L“ ~7%-

L (19)
s =LCR
represented in Fig. 8. But,

¢0 S \ 57‘—(
;6
D ’C’ K® KSH KSf/

(18)




5 = \I\l\lk\\ll!\ll\ly

: % > b "

: / 2 . Y
{ NS f@\\\ - o
il AN - ) — o~ ~
g L) N

-

w..

b

w..




N Auid DS Sneet Sl gnuic et anedSmois Sl asith Adh mn s s e RIS Samd St dr Pl g R T T T W S R W I S D A R S L S e W
- - * ~ ~ - - - - ~ - B . - - - ~ . ~ . N . p . r R - ) - . E QR - . .
F Sy R = ST e SR R - A Y I e 2 SRS LS .

k’\
L
AR
| I
I
[e
b
h“/
L
b
s
2
s

W
-

'v—r-r'-‘E ;
AL ,
T_8 b .
5

9
=Sty S SH ery OH
LS i = &) LFSH>~. @ I)(J /} ]KOK (21)
p= (<) K

(a>j<5+| <MJ:5+U;=P @‘

Flgure 9

Skeleton (a) vanishes. (b) cancels exactly the contri-
bution from (20). This latter cancellation of(Df:so
against a subset of [__S f= -l occurs to all
orders. The contribution of the last term of (18),

Fs= T (X*T) F (22)

is represented by three skeletons:

flgure 10




w— . 2 haenodihte Subt hiba
T T T TR T T T .-Tﬂ-—wr-vg—-wg‘—vx-rv*‘v‘-‘"r-'r'w-"v—- b e et e Aot Sttt A b/t S ettt AR A S R

e 10
Adding (20), (21), and (22), and integrating (18) we find:

)@ “T) r (23)
L ¢Z ‘L/pf 7—/{7‘

corresponding to the four skele%ong

3 i -

s @ o
8 4D
; (@) (b) ()

Filgure 11

Clearly (b) contributes for S > X only and (c) for

S 2 4 only.

Note that the graphs for the asymptotic value of
differ from those corresponding to the graphs for its

’}; derivative only because of the propagators at the
top .
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(1v) Third order theory

At this order the expansion breaks down. From (3)

we have:
/ -
IR ) S Y
e dTs MM, DT

The analysis proceeds as in second order. The graphs for

the kinetic conditionft} e/éjzsare given in Fig. 8. The

contributions from”)f”f/@fﬂaexactly cancel a subset of
L—1 f: . The divergent graphs arise fromcaF

s

CArC L 0 4 .
Db SIS ) P A
v e e ] Catate e

Z.

TTTTE T
a0




AR N e Eepa i AR SRS ST et IR e AR T Py T ROV D MR IR e R )‘.*.‘w

11

The operation /;ant in fact inserts the second order

kinetic condition on each of the "free legs" _f-, of

the graphs for FSl, leading to the following two skeletons

£k

oy

P K) A @
)

ke

"v’""\
Tt P

) (5
Figure 12

iu! gl % Rl ey
U5 ‘b‘l . v . -

where (K) denotes the entire Landau graph. (a) is
divergent due to the coincildence of two singular

functions $1, 3 1o, while (b) 1. finite. The 32
skeletons for F°° are given in Fig. 13.

" Ty
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(v) Higher order terms

The construction of all the skeletons of a given
order has now been made completely systematic. In Fig. 14
we give the fourth order kinetic condition. The reader
can convince himself of the fact that there are

singularities corresponding to arbitrary powers of :S*s
introduced by the derivatives

fj} -5 K
-_..':_. K:FO) n>| (24)
™\ "\
0 T n
*
Thus, for example, the simplest ( :S 3)2 divergences are
represented by the skeletons in Fig, 15.
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IV, CONCLUSION

It has been suggested (%) that the divergence in the
kinetic expansion can be remedied by a matchling of the
small relative velocity behavior where the divergences
occur to terms Introduced by expanding g? in fractional
powers of ég . For the simple initial value problem
it is not possible to remedy the expansion in this way.
This can be seen as follows,

Write y
e=1"  Ay="'t (25)
B = nZ“’q’LGSH (26)

The resulting perturbation equations reduce back to (3)

with (5) and (6) for the simple initial value problem.

If Initilal correlations are allowed, this reduction

breaks down. It is an open question whether a choice of

initial correlations can be made that makes the fractional

power expansion equivalent to the palr kinetic equation.
The transient behavior of Es depends on the choice

of initlal conditions. We have therefore not discussed

it in thils paper since it is best understood in con-

nection with the complete inltial value problem,
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APPENDIX
The Liouville equation is written as

AEY N
o ﬁ‘Fw (1)

with the energy operator

HoP=K+T° (82)

The kinetic energy and interaction energy operators:

Ki= 2V, (1)
(
-5 < - 9.9 T 1),
L =§l ijw tU‘j vvc"’-vj ULJ V;IJ (ad)
; KA. 70 W
LS: L(S*H Llc"{"‘ S 1Y) ’HV U(sﬂ VV (AS)

=

All quantities have been made dimensionless with
respect to

r. the range of the two body interactlion

o}
o the depth of the two body interaction

T the kinetic temperature of the gas
The weak=-coupling parameter is
& = .féﬁ. 274 (46)
i <
with the condition

N A = (47)

where N is the number of particles in the system and V 1s
the volume of the box that encloses 1t.
The s-body distributlion function is glven by

F—'g. ..._._._J{::/\/ f9l)<9+v . @A‘\Z‘U‘A%AS)
V \




